
The Fragility of System Organisation

Barry Dwyer

Department of Computer Science
University of Adelaide

Adelaide, Australia
Email: barry.dwyer@adelaide.edu.au

Abstract

It is usually assumed that the gross topology of transaction processing systems depends on the
nature of the business, is stable, and determines rather than is determined by detailed
procedures. Recent research in automated systems design suggests that the opposite is true:
small changes to procedures, or even to data representations, can invalidate a system
structure. It is to be supposed that many existing systems either fail to process transactions
correctly, or succeed only because of informal communications that were not part of system
design.

Keywords

Batch IS, Determines Relation, Determines Graph, DFD, Information Flows, IS, IS Design,
Organizational Change, Order-Processing IS, Organizational Design, Process Design, Task
Structure, Transaction Processing Systems

INTRODUCTION

Metaphor

Transaction processing systems (Gray and Reuter 1992) are usually divided into processes
connected by data flows. The purpose of these systems is to record business data and keep it
up-to-date. It does not matter whether we are talking about departments within a business,
programs within a computer system, or a PC network using work-flow technology (Flores et
al. 1993), the principles are the same. In what follows, we use the metaphor of departments
made up of clerks working with written records. In computer terms, translate ‘department’
into ‘program’, ‘clerk’ into ‘process instance’ and substitute a database for the paper work.
Several clerks within a department can be seen as parallel invocations of a process, and when
they ‘contend’ for records, this implies the need for record locking, perhaps leading to
deadlock (Haerder and Reuter 1983).

Separability and Independence

The Serv-U-Rite Warehouse is a distributor of white goods, obtaining its supplies from several
nation-wide manufacturers and importers. Sales orders from its customers pass through four
departments:

• Pricing extends an order by looking up the current price of each item ordered.

• Credit Control checks and updates the customer’s current credit standing.

• Stock Control determines whether each order item can be delivered, updating the stock
on hand, and raising a back-order if necessary.

• Accounts updates the customer’s balance, and issues an invoice.

We ask four questions: How was this arrangement arrived at? Why does it work? Is it stable?
Can it be improved?

Before considering this relatively difficult case, let us consider the evolution of a system at the
(fictitious) Macrotopian Reference Library as it grows to meet increasing demands.

The library lends only to its branches. Loans are requested by electronic mail, by telephone, or
by post. The loans system records the numbers of copies of books remaining on the shelves,
and the number borrowed by each branch. Because there is an inevitable delay in delivering
the books themselves, the system does not need to respond in real time.

Each book and each branch is associated with an index card. When a branch library borrows a
book, its book record is adjusted to reflect the number of copies on the shelves, and the branch
record is adjusted to reflect the number of books borrowed. The library has a rule that the last
copy of a book must always remain on the shelves, so that it can be consulted by visitors to the
library. However, such visitors cannot themselves borrow books.

In the simplest possible implementation of this requirement, one library clerk receives the
orders, and adjusts both sets of index cards as each loan is made. The clerk must first check
that the book being borrowed is not the last, then increment the number of books borrowed by
the branch and decrement the number of copies of the book remaining on the shelves. If we
want to know if a more complex implementation is correct, we need to ask if it would get the
same results as this.

Suppose that, as the demand for the library’s services increases, the clerk cannot cope with the
work-load. During busy periods, the clerk may then merely record the identifiers of the books
and branches, and later, during quiet periods, update the file cards from the batches of loan
records (batch processing). Rather than search the book and branch library card files at
random, the clerk will soon find that it is more efficient to sort the loans into card file order,
first by title to update the book card index, then by branch to update the branch library cards
(sequential processing).

Suppose the library becomes still busier, and it becomes necessary to employ two loan clerks.
They may return to the direct method of recording loans, but since they share the use of the
same index cards, they will need to cooperate in using them, and will sometimes even contend
for the same book or branch record. Given enough work, they will again find it easier to
record loans and update the files separately. They can do this in several ways. One option is
for one clerk to control the book cards, and the second clerk to control the branch library
cards. This division of work ensures that they will never have to contend for access to record
cards.

At this stage, the library system has the structure,

• Check and update the number of books on the shelves.

• Update the branch record.

This decomposition depends on a property we call separability (Conway 1963). The two
steps can be separated because, although the updating of the branch records depends on the
state of the book records, the issue of a book does not depend on how many the branch
currently holds.

Suppose that the library becomes so busy that several clerks are needed. How can they be
used?

One option is for the new clerks to record loans, while the existing clerks update the book file
and branch library file. What if the clerk who updates the books file cannot cope? If two

clerks are allocated to updating it, they will need to share its use, and it may prove that two
clerks can work no more quickly than one (parallel processing, contention). Suppose that the
books file is split, A-N, O-Z. Then the two clerks can work independently, at double the speed
(a partitioned database). The same trick can be used to speed up access to the branch library
file, and by splitting the files into more and more parts, the speed-up can be increased as much
as needed.

There is a second important principle at work here: as far as the information system is
concerned: The actions on each branch card are independent of those on every other branch
card, and the actions on each book card are independent of those on every other book card. It
is this property of independence that allows the card files to be split into parts that can be
processed in parallel— the same condition that allowed the files to be processed sequentially
in A to Z order (Dwyer 1995, 1998a, 1998b). However, the independence property could only
be exploited after the system was decomposed into two steps, which relied on the property of
separability. This example illustrates the importance of both properties in system design.

Before moving on, it is important to say what we mean by a design being correct when it is
subject to internal delays (Dwyer 1999). The difficulty is that such a system may never be in a
consistent state. For example, the clerks who update the branch records may be a day behind
the clerks who update the book records. A snapshot audit of the system might find that the
records of the numbers of books on the shelves plus those on loan disagreed with the number
of books actually owned by the library.

We establish correctness by reference to a system that processes one transaction at a time. We
may imagine a series of transactions entering the system, and then allowing the system to reach
equilibrium. If the state of system we are considering is always the same as that of the
reference system, we say it is correct. In general, we can guarantee this only if each sub-
system processes its transactions in their original arrival order. Order is obviously important in
this example. If two branches want to borrow the last available copy of a book, the first one to
make the request should succeed, and not the second.

DATA DEPENDENCES

The Determines Relation

As the Macrotopian reference library grew, its possible system structures were determined by
the fact that the number of books available on the shelves determined the number of books
borrowed by branches. Moreover, the number of books held by branches did not determine the
number available on the shelves, the number of available copies of one book did not determine
the number of another book, and the number borrowed by one branch did not determine the
number borrowed by another branch. We can summarise this situation in a simple diagram: the
graph of its determines relation. (For background on graphs, see, eg, Schmidt & Ströhlein
(1993).)

Available Borrowed

Title Branch

Figure 1: The Determines Graph for Macrotopian Reference Library Loans

• The shading of the vertices distinguishes book attributes, branch attributes and inputs.

• The arrow from Available to Borrowed shows that Available determines Borrowed.

• The arrow from Title to Available shows that Title determines Available.

• The arrow from Branch to Borrowed shows that Branch determines Borrowed.

• The (undecorated) loop on Available shows that the existing value of Available
determines the new value for the same book.

• The (undecorated) loop on Borrowed shows that the existing value of Borrowed
determines the new value for the same branch.

• The absence of a reverse arrow shows that Borrowed does not determine Available.

There are three ways one variable can determine another:

• It can be part of some expression that is evaluated to determine a new value of the other.

• It can determine whether (or how often) some expression is used to determine the new
value of the other.

• It can determine which record of a file is chosen for inspection or updating.

Correctness of a Data Flow Diagram

In this example the determines relation defines a partial order on the variables the system must
inspect or update. We can show (Dwyer 1999) that any Data Flow Diagram (DFD) (DeMarco
1978, Gane and Sarson 1979) of a system that can implement this problem correctly (e.g.,
Figure 2) must preserve this partial order.

Title, Branch BranchBranch
Libraries

Update
‘Available’

Update
‘Borrowed’

Book Records Branch Records

Figure 2: A possible Data Flow Diagram for Macrotopian Library Loans

A DFD preserves the ordering of a determines relation only if,

• No updated variable is accessed by more than one process.

• If the process inspecting or updating variable V precedes that for variable U in the DFD,
there is no directed path from U to V in the determines relation.

We assume that each process deals with transactions in arrival order, but transactions can
queue between processes. The first rule is needed because of delays between processes. A
transaction inspecting a variable downstream of the process that updates it could reveal a
future value determined by later arrivals. A transaction inspecting a variable upstream of
where it is updated could reveal a past value not yet affected by earlier arrivals. The second
rule amounts to saying that an upstream process cannot guess what will happen later in a
downstream process.

Figure 2 is not the only possible DFD. The determines relation shows that the Update
‘Available’ process does not really need the Branch information— although Figure 2 certainly
makes for a more convenient work-flow. Also, combining the two update processes would

preserve the determines relation, as in the case where one clerk does all the work. Finally,
because no Title determines another and no Branch determines another, both processes in
Figure 2 can access records independently. This permits parallel or sequential processing.

A CASE STUDY

Requirements

Let us return to the more complex Serv-U-Rite sales orders system.

We assume that Serv-U-Rite’s sales order system maintains the following variables:

• Authorised: an indication whether a customer account number is valid,

• Balance: the amount the customer owes for goods sold,

• Accrued: the sum of Balance and the value of goods on back-order.

• Credit-Limit: the maximum allowed value of Accrued,

• Offered: an indication whether a product code is valid,

• Price: the price of the product,

• Stock: the quantity of the product available for sale.

Sales order lines carry three attributes:

• Who: the customer making the order,

• What: the product being ordered,

• Qty-Ordered: the amount of product What that customer Who requires.

There are also two outputs:

• Invoice-Detail: a record showing the quantity and value of each item delivered.

• Back-Order: a record made when there is insufficient stock to fill an order. (We assume
that back-orders are filled by a separate system.)

A real system would also store descriptions of products and names and addresses of
customers, and the transactions would include dates, order numbers, etc., which, although they
complicate real-life situations, add nothing to this case study. Authorised and Offered would
probably be inferred by the presence or absence of Credit-Limit or Price records, but we treat
them here as true-false variables. This has the advantage that inserting and deleting records
can be analysed like ordinary updates.

The Determines Relation

Drawing the graph of the determines relation is straightforward:

• We draw a vertex for each variable, input, or output.

• We consider each updated variable or output in turn, and

– decide on which other variables it depends,

– draw an arrow to it from each such variable.

The result of these steps is shown in Figure 3. Note that Accrued of customer Who depends
on

• itself, because its existing value is incremented,

• the value sold: the product of Qty-Ordered and the Price of product What,

• Credit-Limit and itself, which determine whether the sale satisfies credit policy, and

• Authorised and Offered, which determine whether the sale proceeds at all.

However, we note— and this is important— Accrued does not depend on Stock, because the
customer is committed either to pay for the goods now, or to pay for a back-order in the
future.

Stock

Qty-Ordered

Accrued

Back-Order

Price

Who

Authorised

Balance

OfferedCredit-Limit

What

Invoice-Detail

Figure 3: The Determines Relation for Sales Orders

A similar reasoning shows that Stock depends on itself, Accrued, and all the above. We use a
shorthand in drawing the determines relation, and simply draw an edge from Accrued to Stock.
Because the partial ordering implied by the graph is what matters, we do not need to draw
additional edges from any variables that already determine Accrued. Similarly, we draw a
single edge from Stock to Balance and from Stock to Back-Order. For the same reason, we
omit the self-loops on Accrued, Stock and Balance.

Choosing The Best Data Flow

One way to implement this system is shown in the DFD of Figure 4. This corresponds to the
current organisation of Serv-U-Rite: Pricing, Credit Control, Stock Control and Accounts.
However, it is one of many possible solutions. For example, a separate process could attach
Authorised and Credit-Limit information to incoming orders before the process that updates
Accrued, or the Stock Control department could issue the invoices.

Customers
Check Price

&
Availability

Check
Standing &

Credit

Product Records

Customer Records

Update Stock
Update
Balance

Purchasing

Sales
Order

Back
Order

Offered,
Price Stock

Authorised,
Credit-Limit,
Accrued

Balance

Customers

Invoice

Figure 4: A possible DFD for Serv-U-Rite’s sales order system.

Of the many possible DFD’s that preserve the determines relation, what decides which is the
best? A good heuristic is to choose processes to access variables that can share the same
record. For example, Authorised, Credit-Limit and Accrued should be grouped into a single
record. A second heuristic is to choose processes to avoid accessing variables that cannot
share the same record. For example, a product variable such as Stock cannot share the same
record as a customer variable such as Balance. This is why we shaded the vertices in Figure 3.
To derive Figure 4, we considered combining vertices with the same colour, but not those with
different colours. We can see that Figure 4 is the DFD with the least number of processes that
satisfy these principles.

The reason for the first heuristic is that it is quicker to access one record containing several
variables than several records containing one variable.

The reason for the second heuristic is less obvious: the DFD of Figure 4 processes each
product independently of every other, and each customer independently of every other. This
allows many records to be worked on in parallel. It also allows sequential file processing.
Although a process that updated both Stock and Balance could still allow several clerks to
work in parallel, they would contend for use of both files. If the work were sub-divided by
customer account number, clerks would still contend for product records. In a stock shortage,
it would also be hard to maintain a first-come, first-served policy correctly. Corresponding
objections would apply if the work were sub-divided by product code. A process that accesses
variables from two different records is usually more complex and less efficient than two
processes that access them separately. In short, it pays to exploit independence.

Why not combine access to Stock with access to Offered and Price? All three variables could
share the same product record. The answer is that the combined process would have to come
both before and after the customer credit check. Depending how you look at it, either this is a
logical impossibility, or it is a confused way of describing two different processes. Even if the
Pricing and Stock Control functions were done within the same office they would remain
distinct tasks, done at different times. On the other hand, if we really combined them by doing
them at the same time, we would need to do the credit check at the same time too.
Unfortunately, this would violate the second heuristic: accessing variables that cannot share the
same record. In fact, although Figure 4 shows only two data stores, it would be better to have
four, to keep the Stock and Balance records separate from the rest.

SYSTEM FRAGILITY

Sensitivity to Requirements

Suppose, as a change to company policy, Serv-U-Rite decides not to place back orders when
orders cannot be filled. Since the requirements are now simpler, surely the existing system will
be able to cope with this. Wrong! A customer’s commitment will now depend on whether
goods are in stock. In fact, Accrued becomes redundant, because a customer’s commitment
becomes simply the balance they owe.

Figure 5 shows the determines graph for this new situation. Its most important feature is that
Balance determines Stock and Stock determines Balance. The first because the credit check
decides whether goods should be sold; the second because customers pay only for what they
get. This means that the DFD of Figure 4 is no longer a valid solution. A correct
implementation of the system would need to combine the credit check, stock update, and
balance update in a single step. This is a major setback, because Stock is a product variable
and Balance is a customer variable. If several clerks work in parallel, they will contend for
access to the records, resulting in greater complexity and lower efficiency. This cannot be
avoided.

Stock

Qty-Ordered

Balance

Price

Who

Authorised

OfferedCredit-Limit

What

Invoice-Detail

Figure 5: The Determines Relation when Back Orders are Eliminated.

In practice, it is likely that Serv-U-Rite would cling to the DFD of Figure 4 even when it is not
strictly correct. This could be done by fudging the requirements. For example, the Credit
Control department could assume no shortages, then correct customer balances later. This
could lead to embarrassment: A customer might order two items: the first expensive, the
second cheap. Assume the first sale exhausts the customer’s credit, so the second sale has to
be rejected. Then it turns out that the first item is out of stock, so it cannot be supplied. Try
explaining to the customer why the second item wasn’t delivered! The only way this could be
done with the DFD of Figure 4 is to allow feedback from the stock update to the credit check.
The resulting system would not really be fair; our unfortunate customer might still lose out
because by the time Stock Control have told Credit Control about the shortage, and Credit
Control have allowed the second item, a later order from another customer might have
exhausted its stock. Even so, this ‘solution’ might be accepted— after all, the customer will
never know!

Sensitivity to Data Representation

A customer’s Accrued was defined to be a sum of two terms: the amount the customer owes
for goods sold, and the value of goods on back order. We may therefore compute the back
order value as the difference between Accrued and Balance. Suppose we store this difference
instead of Accrued, calling it Commitment.

Figure 6 shows the resulting determines relation. It has the same problems as Figure 5. The
cycle involving Commitment, Stock and Balance means that they must all belong to the same
process. The DFD of Figure 4 has been made invalid without even changing the original
requirements.

How can we find the best set of variables to store? The question does not seem to have a
simple answer. One heuristic is to consider how the determines graph might be simplified.
The cycle in Figure 6 is clearly an embarrassment, and Commitment stands out as a nexus in
the graph: six other variables determine Commitment. By studying the requirements, we see
that it is Credit-Limit minus the sum of Balance and Commitment that determines whether an
order should be processed. Perhaps we should consider storing this result instead of the
variables from which it is computed. Naming this result ‘Available-Credit’ would lead to a
determines relation exactly like that of Figure 3, replacing the vertex labelled Accrued by one
labelled Available-Credit.

On the other hand, it is easy to find worse ways of storing data. Placing Stock and Price in the
same record would be a nuisance; it would create a cycle in any of the determines relations we
have considered. More subtle, but just as bad, the presence of its Stock record (rather than its
Price record) could indicate whether a product was Offered.

Stock

Qty-Ordered

Commitment

Back-Order

Price

Who

Authorised

Balance

OfferedCredit-Limit

What

Invoice-Detail

Figure 6: The Determines Relation when Commitment Replaces Accrued.

METHODOLOGY
For completeness, here are further notes on the methodology used (Dwyer 1999).

Multiple Transaction Types

A real system must deal with more than one kind of transaction. In the case study, we may
expect that customers will pay their accounts, prices will change, goods will be delivered, new
products will be made available for sale, new customer accounts will be opened, etc. The DFD
of Figure 4 can handle most of these transactions, and therefore so can Serv-U-Rite’s existing
departmental structure. We can establish this by checking that the determines graph of each
transaction type is consistent with the DFD. Equivalently, for each transaction type we can
add new edges to the original determines graph. For example, a transaction to create a new
product would first need to check that the product code was not already Offered, then to
record its Price and set its Stock to zero. This would introduce a new edge from Offered to
Price in Figure 3, but it would not invalidate the DFD of Figure 4.

Some transactions are not so easily accommodated. For example, when supplies of a product
are replenished, the system first ought to check if there are existing back orders for the
product. This would make Stock depend on Back-Order, introducing another cycle. Since
Stock is a product variable, but back orders need to be identified by product, customer and
date, they must be stored as separate records, and the resulting process would be a complex
one. However, clustering back order records by product should solve most of its efficiency
problems.

Modes

One type of transaction that is almost certain to cause difficulty is record deletion. This is
because for most transactions the presence of a record determines other variables, but in a
deletion, the other variables determine its presence. For example, suppose we decide that a
customer record can be deleted (by setting Authorised to false) provided the customer’s
balance is zero. In the determines graph of Figure 3, this would introduce a new edge from
Balance to Authorised, completing a cycle, and making the DFD of Figure 4 incorrect. A
quick phone call between departments might appear to solve the problem, but the information
travels against the flow, and it is possible that the customer might have placed orders already
flowing in the forward direction. As a result, the Accounts department could finish up billing
an apparently non-existent customer.

One way to avoid these problems is for a system to have several modes of operation. Modes
correspond to different, incompatible DFDs. For example, ‘order processing’ mode can be
shut down, and ‘file weeding’ mode started up. Many businesses work in different modes at
different times of the day, week, month or year. An obvious example of such a mode is stock-
taking, for which many businesses close down other operations entirely.

DFDs are often drawn showing many modes at once, the flows being labelled with the
transaction types that flow along them. Such diagrams are usually too complex to be useful.

Compatibility

In the case study, an order item involves just one customer and just one product. This allows
many clerks to work in parallel without contention or deadlock. But what happens if a trans-
action involves more than one customer or product?

As a simple example of this kind, consider an accounting system that allows money to be
moved between accounts, provided that both the payer and payee are Authorised. There is
then a dependence of Balance on Authorised, which would be drawn as in Figure 7. The cross
decorating the edge from Authorised to Balance is needed because the Authorised of the payee
determines the Balance of the payer, and vice versa. We say that the edge from Authorised to
Balance is ‘incompatible’.

Balance

Payer

Payee

Authorised

Amount

Figure 7: A Determines Graph showing Incompatible Variables.

If Authorised and Balance are dealt with in separate processes, parallel operations are possible.
For example, two different clerks could efficiently check the payer and payee in parallel. Then,
once both authorisations have been collated, both balances could be updated in parallel.

Combining Authorised and Balance into a single process would introduce contention.
Therefore we avoid creating processes that include an incompatible edge. Actually, we have
already seen many examples of incompatible edges. In the case study, any edge linking a
product variable and customer variable is incompatible. However, we do not need to mark
such edges with a cross, as their status is already clear from the shading of the vertices.

If we added the requirement that the payer’s Balance must be no less than Amount, the payer’s
Balance would determine the payee’s Balance. Balance would be incompatible with itself —
the loop on it would be marked with a cross — and no implementation could avoid contention.

Deriving the Best DFD

How do we derive the best DFD, in general? We draw the graph of the most frequent
transaction’s determines relation. If this defines a partial ordering, all well and good; but if
not, we must find the strong components of the graph.

Strong components are maximal sets of vertices such that there is a directed path between
every vertex in the set. The components define the smallest processes that can be separated.
After clustering vertices that belong to the same component (Aho et al. 1972), the resulting
graph defines a possible DFD. This DFD contains the maximum number of minimal separable
processes. It is canonical: only one such graph can be derived from a given system

requirement and set of variables. However, it can usually be improved by merging compatible
processes.

Since we want to avoid creating cycles between processes, it is sufficient to consider
combining pairs of processes that are either adjacent in the graph, or have no directed path
between them. To derive Figure 4 from Figure 3, we combined Authorised and Credit-Limit
with Accrued, because they were adjacent to it. Then we combined Offered and Price because
they were not connected by a directed path. We did not consider combining Accrued with
Balance because there is a compound path between them — likewise Price or Offered with
Stock. In this we were guided by the shading of the vertices. We did not consider combining
customer variables with product variables.

Different considerations would apply in optimising Figure 6. It contains a strong component,
and therefore a process, involving Commitment, Stock and Balance. This process must
therefore access records for Who and What. Since it is a bottleneck that causes contention, the
remaining customer and product variables may as well be stored in the same records as
Commitment, Stock and Balance. Thus, the best DFD here consists of one rather complex
process.

We then consider other transaction types in descending order of frequency. If one of them
introduces a cycle into the determines graph that would lead to an inefficient DFD, we assign it
to a new mode, and draw a new determines graph for it. If this would cause too frequent
switching between modes, we might seek to change the requirements in some way that will
eliminate the cycle. For example, although setting Authorised to false when Balance is zero is
incompatible with other transactions, it is easy to introduce a new variable that can be set
unconditionally to prevent a customer making further orders. This might satisfy the business
requirement equally well. When changing the requirements isn’t possible, we can consider
whether an incorrect implementation will do. For example, not supplying a customer with
goods we have is far safer than supplying a customer with goods we don’t have. If errors will
happen rarely and won’t cause serious problems, we may prefer to live with them.

Consistent Reports

We said in the introduction that systems in which transactions are delayed rarely reach
consistent states. How can we report a state of such a system without first having to shut it
down? The answer is simple: We treat requests for reports like any other transaction, making
them flow along the same pathways and be subject to the same delays as regular transactions.
Provided each clerk (process instance) deals with transactions in their original arrival order, a
request for a report will arrive at each clerk at the correct point in the history of the data. In
the case of the library system, if each clerk is asked to report the state of her records when
loans before noon have been processed but loans after noon have not, although they may
report their results at different times, the results will be consistent.

SUMMARY
System requirements for transactions can be summarised by determines relations. Assuming
that a system should be considered correct only if it guarantees to produce the same results as a
one-transaction-at-a-time reference system, the determines relations constrain the DFDs of
valid system structures. For some requirements these structures permit contention-free
processing, for others they do not. Changes to requirements can destroy the validity of system
structures. These changes can be as trivial as changes to how data is represented. Different
transaction types may need different DFDs, making it necessary for a system to have several
modes.

Because of the fragility of system structure, organisations often process transactions
incorrectly. In some cases the errors are corrected through informal communications, but if
they are harmless, they may simply be tolerated.

REFERENCES
Aho, A.V., Garey, M.R. and Ullman, J.D. (1972) The Transitive Reduction of a Directed

Graph, Society for Industrial and Applied Mathematics Journal of Computing, 1, 131–
137.

Conway, M.E. (1963) Design of a Separable Transition-diagram Compiler, Communications
of the ACM, 6(7).

DeMarco, T. (1978), Structured Analysis and System Specification, Yourdon Press.

Dwyer, B. (1995) “Contention-free Scalable Parallel Batch Processing: Exploiting Separability
and Independence”, Technical Report TR95-03, Dept. of Computer Science, University
of Adelaide.

Dwyer, B. (1998a) Separability Analysis Can Expose Parallelism, Proceedings of PART ’98:
The 5th Australasian Conference on Parallel and Real-Time Systems, 365–373, (K.A.
Hawick & H.A. James, eds.) Springer.

Dwyer, B. (1998b) Separability and Independence in Parallel Systems Design, Computer
Science Technical Report 98-02, Dept. of Computer Science, University of Adelaide.

Dwyer, B. (1999) The Automatic Design of Batch Processing Systems, Doctoral Thesis, Dept.
of Computer Science, University of Adelaide.

Flores, F., Graves, F. M., Hartfield, B. and Winograd, T. (1993)“Computer Systems and the
Design of Organizational Interaction”, in Readings in Groupware and Computer
Supported Cooperative Work, 504–513, (Baecker, R.M. ed.), Morgan Kaufmann.

Gane, C. and Sarson, T. (1979), Structured Systems Analysis: Tools and Techniques,
Prentice-Hall, Englewood Cliffs, NJ. (1979).

Gray, J. and Reuter, A., (1992) Transaction Processing: Concepts and Techniques, Morgan
Kaufmann.

Haerder, T., Reuter, A. (1983) Principles of Transaction-Oriented Database Recovery,
Computing Surveys, Vol. 15, No. 4, Dec. 1983 pp. 287–317.

Schmidt, G. and Ströhlein, T. (1993) Relations and Graphs, Springer.

COPYRIGHT
Barry Dwyer (c) 2000. The author assigns to ACIS and educational and non-profit institutions
a non-exclusive licence to use this document for personal use and in courses of instruction
provided that the article is used in full and this copyright statement is reproduced. The author
also grants a non-exclusive licence to ACIS to publish this document in full in the Conference
Papers and Proceedings. Those documents may be published on the World Wide Web, CD-
ROM, in printed form, and on mirror sites on the World Wide Web. Any other usage is
prohibited without the express permission of the author.

	Home
	Contents
	Search
	Exit

