
Using Standard Cases and Pairwise Comparison to Assess the Validity of
Software Size Metrics

Gavin Finnie1

Eberhard Rudolph2
Gerhard Wittig1

1 Bond University

Australia
Email: gfinnie@bond.edu.au

2 Hochschule Bremerhaven

 Germany

Abstract

A variety of metrics have been proposed to measure the size of software, including Function
Points, Mk2 Function Points and Full Function Points (FFP). This paper describes
research in progress that is attempting to assess the extent to which user perceptions of
functionality mirror the metrics used to measure software size. Users and developers have
some intuitive understanding of software size, at least in comparing one project to another.
This project aims to quantify these perceptions. In the first instance, these results will form
part of the COSMIC group initiative that is performing a range of trials to assess the validity
of the FFP approach.

Keywords

Software Metrics; Function Point Analysis; Analytic Hierarchy Process

INTRODUCTION
Accurate and effective prediction of software project size has proved an elusive goal for
software developers. Without a practical measure of size, prediction of development effort
becomes very difficult. Reliable prediction of software development effort from the system
size is a necessary prerequisite to effective project planning and control.

A wide variety of software metrics have been proposed. Of these, Function Points (FP)
(Albrecht, 1983) and Mk2 Function points (Symons, 1988, 1991) have probably had the
widest use. However the Function Point approach has been criticised on several grounds,
including the fact that the original methodology was based on MIS type projects and hence
biased towards data processing applications. More recently, Full Function Points (FFP) have
attracted considerable attention (Abran, 1999; Morris and Desharnais, 1998; Oligny at al,
1999) as a potential methodology, which could be used for estimating several categories of
software project. The COSMIC (Common Software Measurement International Consortium)
research effort (Abran, 1999; Symons, 1999) is currently performing a range of trials to
assess the validity of the approach for different types of software and to fine tune the
method’s measurement function if necessary.

For a software size metric to be accepted in the user community, it should conform to the
user’s perception of software size i.e. if a user perceives one system to be twice the size of

another, the software metric should reflect similar proportions. This paper describes a
research project that will compare perceived user functionality of a number of small software
projects and the functional size of these projects as measured using several metrics ie FFP,
FPA and Mk2. A sample of “users/developers” with some software development experience
will be asked to complete a survey, using either a manual questionnaire or an interactive data
collection program. The comparison of each project's functionality is done on a pair-wise
basis and the results are analysed using the Analytic Hierarchy Process (AHP). The project
has undergone a pilot test to refine the measurement instrument and more complete data will
be gathered from October 2000.

The use of pair-wise comparison is widely accepted in the social sciences as a means of
establishing the relative merit of an item with respect to others of the same type. Finnie et al
(1996) proposed the use of AHP in conjunction with expert judgement to assess software
development effort for new projects. More recently, Miranda (1999) proposed AHP to
provide a means of establishing software size by paired comparisons. In this approach, the
projects to be estimated would be sized using UML Use Cases. Provided at least one
developed project exists with a known Use Case measure to act as an anchor, the other
projects can be estimated on the basis of their ratio to the known case.

DEFINING FUNCTIONALITY

Function Points and Functionality

The measurement of user perceived functionality requires some anchor to provide a
framework for functionality. In earlier research on functionality and function point analysis,
the authors provide a definition of functionality that was framed around the function point
analysis approach (Rudolph et al (1998), Wittig at al (1999)).

In terms of the function point analysis method, software comprises processes and data. This
required that the functionality provided by both these components had to be defined. The
definition included:

(1) The number of tasks necessary to complete the function, ie the number of decisions
needed to be made or the number of questions that need to be asked

(2) the amount of information that needs to be handled by the function, ie. written
down, analysed, received or produced

(3) The skill level of the person required to complete the function, ie their:
- capability to understand the problem
- capability to perform the necessary calculations and algorithms
- relevant experience with similar problems
- knowledge of the correct rules to be applied to the problem

(4) File functionality which could be viewed as a measure to include one or more of
the following:
- the amount of information that is contained in one file record
- the capacity of the record to provide a range of information
- the capacity of the file to be able to cross reference data in another file

This definition was framed in the context of function point analysis and could suffer from
bias because of that. For the current research it was felt that a more general approach would
be of value and a model based on the ISO proposed standard 14143-5 has been proposed.
Although this ISO standard is currently a work in progress document and will likely undergo

some revision, it does provide a research framework which can be used as a basis for
defining functionality.

ISO Standard 14143-5

ISO/IEC PDTR 14143-5 identifies 3 general categories of characteristics that affect
functional size. These are:
• Dynamic event control (DE)
• Data retention and manipulation (DR)
• Logical operations (LO)

Each of these three general categories contains a number of “characteristics relevant to
functional user requirements” (CHARs in ISO terminology). Each category is explained in
more detail below.

Dynamic event control

The Functional User Requirements (FUR) dictate that the software operates concurrently
with, or controls, external or internal events. The relevant characteristics are:

 Response: Software must respond to Internal/External events (e.g., occurrence of a data
condition that is recognized by the software, and that requires action to be taken to
restore the system to a normal, consistent condition)
 System Monitor: Software monitors environment (either via passive or polled data
crossing the boundary) to detect out of bounds/emergency data values (i.e., self directed
sampling), upon which its processing sequence can be adjusted by stimulus priority (e.g.,
high priority stimulus can interrupt or alter processing of services)
 Interfaces/Control: Interfaces and control of external objects or other software are
critical.
Artificial Intelligence: Requirements for the software to be self-learning (i.e., software
dynamically adapts its behaviour or logic based on historical data or events).
Business Rules: Business process rules adjust based on date, time, season or other
external considerations (e.g., state).

Data Retention and Data Manipulation

The data architecture, relationship requirements, movement and processing of the data
prescribed by the Functional User Requirements constrain the software. The relevant
characteristics are:

 Complex Data: Complex data or control relationships/interdependencies
 Persistence: The persistence or logical storage of control information or current state
data is an important part of the FUR
Movement: High manipulation of data (e.g., multitude of different functions operating
on strings of data such as in word processing and operating system functions)

Services and Logical Operation

The Functional User Requirements specify that particular types of algorithmically intensive
services and/or complex operations must be performed by the software. The relevant
characteristics include:

 Scientific/engineering: Scientific/engineering, mathematical or logical algorithms
required (e.g., high precision and accuracy, includes matrix inversion, statistical analysis)

 Calculation Rules: Software constrained by rules and relationships that define the
calculations

THE CASES
In order to allow pair-wise comparison of software development project, a suitable set of
sample projects was needed. Projects had to be fairly simple to allow participants to
understand all complete projects within a relatively short time (at most 30 minutes) but had
to be non-trivial to allow a realistic size comparison.

Eight small sample cases were drawn from ISO/IEC PDTR 14143-4 and 14143-5. The
number eight was chosen to provide two cases for each of the relevant characteristics
(CHARs) which were predominantly based on that characteristic and two cases which
include a more balanced set of all relevant characteristics. However, using the full set of
eight cases in pair-wise comparisons leads to data collection problems given the number of
comparisons required. Following the pilot study, the survey was adapted to use two separate
sets of four cases.

As an example, one of the cases is given below:

Traffic light change

The user requires a system (for convenience called LIGHTS) that controls the change of
traffic lights at a road intersection. The system will monitor the number of cars waiting in
front of a traffic light. Depending on the location of the traffic light, the time of day and the
number of cars waiting in front of a traffic light the system will have to change the traffic
lights using 10 business processing rules:

If location is non-arterial roads then change red light when >= 3 cars wait
A traffic light at a non-arterial road should be green at least for 15 seconds
If location is arterial/non-arterial road and time < 5am then change red light at non-
arterial road if 1 car waits
If location is arterial/non-arterial road and time >5am then change red light at non-
arterial when >3 cars wait
If location is arterial/non-arterial road and time >5am then change red light at arterial
when >15 cars wait
If location is arterial/non-arterial road change green light at non-arterial road when no
car waits at non-arterial
If location is arterial roads and time < 6am then change red light when >1 cars wait
If location is arterial roads and time 6-9am or 3-6pm then change light when >15 cars
wait
If location is arterial roads and time 9am – 3pm then change light when >7 cars wait
If location is arterial roads and time >6pm then change light when >3 cars wait

PROJECT METHODOLOGY
Users and developers with differing levels of computing experience will be required to
complete the survey. Respondents will be asked to identify themselves as users, developers
or managers. Since effective completion of the survey will require some time, particularly
with needing to understand the functionality requirements of four cases, survey respondents
will need to be selected and persuaded to participate.

A pilot study has been undertaken (see below) and has resulted in major restructuring of the
survey instrument. The next phase will involve gathering data from several sources:

• Several metrics related conferences. Attendees at these conferences have an interest
in software metrics and the availability of a test suite of cases could be of value to
them. Three conferences have been identified and will be attended by individuals
involved in the data gathering exercise.

• Interested organizations. A number of companies that have shown some interest in
software metrics have been approached and others will be targeted. Each company is
asked to suggest some participants.

• Software metrics consultants. The group has a number of interested consultants who
will also serve to identify interested individuals.

The methodology suffers from the problem of lack of random selection of respondents.
However the test cases considered do not favour any one methodology and it is unlikely that
any bias will arise. The order of case presentation can be randomised to reduce some of the
bias effect. Once the initial data gathering is complete, the data will be analysed to determine
the level of variability between responses and the possible need for refinement and further
data collection.

AN ANALYTIC HIERARCHY PROCESS FUNCTIONALITY MODEL
The analytic hierarchy process (AHP) was developed by Saaty (1980,1996) as a technique
for multiple criteria decision-making. AHP facilitates the determination of relative
weightings of several multiple, and sometimes conflicting criteria, towards a specific goal.
The process is able to deal with both tangible and intangible factors.

The first step in classical AHP defines the problem in a form of a hierarchy, where the higher
levels reflect the objectives and the lower levels the factors influencing them. The next step
requires pair-wise comparisons to be made between each two elements of a given level of
the hierarchy, with respect to their contribution towards a factor from a higher level related

Functionality

C1 C2 C4 … … .

DE DR LO

C1 C4 …

Figure 1: AHP Hierarchy

Level 0

Level 1

Level 2

Level 3

to them. Once all comparisons have been performed, AHP uses an eigenvector approach to
apportion weights to all nodes in the tree. The final result is a weighted score for each of the
node values which reflects the relative importance of each node at that level.

Saaty (1996) defines a consistency measure called the consistency ratio which identifies
those comparisons where a revision of judgement is necessary. This is suggested when the
consistency ratio exceeds 0.10. This consistency ratio simply reflects the consistency of the
pair-wise judgements and shows the degree to which various sets of importance relativities
can be reconciled into a single set of weights. For example, if the judgement is made that
case A provides more functionality than case B, and B provides more functionality than C,
and case C provides more functionality than case A, then the consistency score would be
poor, and would be considered a violation of the axiom of transitivity.

The aim of the AHP analysis for this project is for each user to produce, with the given
cases, measurements of the amount of functionality in each case. AHP will produce a
normalised value giving the weight of each component at the leaf nodes of the AHP
hierarchy. The sum of all components equals one. The output is a set of ratio values ie a
value of 0.2 indicates twice as much functionality as a value of 0.1. A figure of 0.2 also
indicates that this project has 20% of the total functionality for all projects. The model based
on four cases is given in Figure 1.

For the lowest level, we require a comparison of the amount of dynamic event control (DE)
functionality for case one versus case 2, case 1 vs case 3, etc, For the next level in the
hierarchy, for case 1(2,3,..), we need a measure of the amount of dynamic event control
relative to data manipulation and logical operations. At the top level, we require a relative
assessment of the total amount of functionality in case 1 versus case 2, case 1 versus case 3,
etc.

Pairwise comparison in AHP uses a nine point verbal scale, with numeric equivalent values
ranging from 1 for equality to 9 for extreme difference between the pair of items. The scale
uses the terms equal, moderate, strong, very strong and extreme with points in between each
of the terms i.e. the scale is

Equal
Equal to moderate
Moderate
Moderate to strong
Strong
Strong to very strong
Very Strong
Very strong to extremely strong
Extremely strong

Other scales have been proposed e.g. Miranda (1999) suggests that a range from 1 to 6 might
be more appropriate for the software domain. The current survey instrument uses the verbal
scale with the Saaty numeric values but these will be subject to review.

Although comparison of all eight cases would be preferable to the four case approach, the
pairwise comparison approach suffers from a combinatorial explosion when the number of
level and items per level increases. At the leaf node level, the number of comparisons
required for the eight cases relative to the dynamic event control CHAR is 28 ie.
(7+6+5+4+3+2+1) or for n comparisons, the sum of 1 to n-1. With the three functional
components (dynamic event control, data manipulation and logical operations) this becomes

84 comparisons. As these comparisons remain the same for the other leaf nodes, there is no
need to repeat the comparison at this level.

For the next level, i.e. the amount of each functional component (dynamic event control, data
manipulation, logical operations) relative to the other functional components for each case,
we need a further 24 comparisons (eight cases with three comparisons). For the final layer, a
further 28 comparisons are required, giving a total of 136 comparisons. Maintaining
consistency and respondent interest with this number of comparisons becomes a major
problem.

 For the four case AHP model in Figure 1, the number of comparisons becomes:

Level 1: 6

Level 2: 3 x 4 = 12

Level 3: 3 x 6 = 18

Total = 36

PRELIMINARY ANALYSIS OF PILOT DATA
Nine sample surveys were performed at the Research Laboratory in Software Engineering
Management at the University du Quebec in Montreal. These surveys used a form of the
AHP model with all eight cases which provided for pair-wise comparison of case
functionality for overall functionality as well as for dynamic event control, data
manipulation and logical operations functionality. There was no comparison of the amount
of dynamic event control, data manipulation or logical operations functionality in each case.
Of these nine cases four had insufficient entries to be used and the remaining five were
complete. The five cases were analysed using AHP.

The pilot data suggested that it was difficult for respondents to maintain consistency and that
some components of functionality (as defined above) may be easier to visualise than others
in terms of maintaining consistency. For the dynamic event control functional category, four
of the five respondents were within a consistency rating of 0.1 (acceptable by the Saaty
convention) while the data manipulation dimension had only two within this range. No
respondents managed to maintain consistency in all four aspects of functionality measured
(the three components and overall functionality) although three users had three of the four
less than 0.1. The issue of consistency is addressed further below but was a major factor in
reducing the hierarchy from eight cases to four.

FP, FFP and MK2 counts were performed for each of the eight cases and correlated with the
estimated functional size from the five samples (using the mean size for each functional
component and the overall functionality). The small sample size makes any results very
suspect but the data does indicate a relationship between the data manipulation component
and user perceived functionality for all three metrics. Although the other components did not
appear significant, some relationships may be established with more data.

Regression was also used to determine how strongly the three functional components related
to the predicted overall functionality. All three components were significant, providing some
support for the ISO model.

AUTOMATING DATA COLLECTION

The problem of maintaining consistency in judgements makes data collection a problem if
rapid feedback is not available. If users complete a manual questionnaire for later analysis,

there is usually no possibility of revising inconsistent responses detected during analysis
unless the respondents are still available. Even if they are, the time delay could make
revision of the results difficult and time-consuming. In an ideal situation, inconsistency
would be detected as soon as possible during data collection and the users given the
opportunity to revise responses as needed.

A simple data collection program has been written which leads users through completion of
the questionnaire and provides immediate feedback as soon as any inconsistency is detected,
Users can navigate forward and backward between responses and change their responses as
they wish. Although the current version requires access to a PC with the program resident for
data collection, we are proposing to encapsulate this as an ActiveX component and make it
available on a web site for data collection..

An additional problem in the AHP analysis identified during the pilot studies was incomplete
data. AHP assumes a complete set of comparisons. Using electronic data collection allows
prompting and verification of the data. A further advantage of using the program is that data
is already in an electronic form, which obviates having to manually enter it for analysis.

CONCLUSION
Users should feel comfortable with whatever size metrics they are using. Unless the
estimated size (using a specific metric) of one project or component relative to another is
roughly in agreement with the perception of the user, it is possible that the cognitive
dissonance induced could result in a loss of confidence in the metric. The approach being
taken in this research will determine how users perceive software project size and will relate
the perceived size to several software metrics.

The COSMIC project is a major initiative to broaden the basis of software size estimation.
COSMIC aims to “develop, test, bring to market and gain acceptance as an industry
standard, a new generation of software sizing methods which are applicable for performance
measurement

• As a component of estimating methods from early in a software item’s life

• In as wide a range of software ‘domains’ as possible;” [Symons, 1999]

A worldwide set of field trials is being undertaken to advance the method to a ‘proven’
status. The goals are to test whether the method gives acceptable size measures, is
unambiguously defined and gives repeatable results for a reasonable sample of projects. The
research project described in this paper is a small part of the overall validation effort of
COSMIC but will also be available as a benchmark for new software size metrics.

REFERENCES
Abran, Alain,(1999) FFP Release 2,0: An Implementation of COSMIC

Functional Size Measurement Concepts, Presented at FESMA 99, Amsterdam,
October 4-7, 1999

Albrecht, A.J and J.E. Gaffney, (1983) “Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation”, IEEE Transactions
on Software Engineering, vol. 9, no. 6, pp. 639–648.

Finnie G.R., Wittig G.E. and Desharnais J-M., Using AHP to Incorporate Complexity and

Productivity Differences into Software Development Effort Estimation” 6th

Australasian Conference on Information Systems in Hobart, Tasmania, 11-13
December 1996, pp231-240.

Miranda, Eduardo (1999), An Evaluation of the Paired Comparisons Method for Software
Sizing, Proceedings of the 9th International Software Measurement Workshop

Morris, P.; Desharnais, J.-M. (1998), Measuring ALL the Software not just
what the Business Uses, in IFPUG Fall Conference, Orlando, Florida, September, 1998
21-25.

Oligny,S., Abran,A., St-Pierre,D.,(1999) Improving Software Functional Size Measurement,
Proceedings of COCOMO and Software Cost Modeling International Forum 14, Los
Angeles, USA, October 26-29, 1999.

Saaty, T.L.(1980) The Analytic Hierarchy Process, McGraw-Hill, New York.

Saaty, T.L (1990) “How to make a decision: The analytic hierarchy process”, European
Journal of Operations Research, no. 48, pp. 9 - 26, 1990.

Saaty,T.L. (1996) Multicriteria Decision Making: the Analytic Hierarchy Process, RWS
Publications

Symons, Charles (1988): Function Point Analysis: Difficulties and Improvements, IEEE
Transactions on Software Engineering,14 (1): 2-11 (1988)

Symons, Charles(1991), Software Sizing and Estimating MkII FPA, John Wiley & Sons,
Chichester

Symons, Charles(1999) COSMIC FFP - Aims, Design Principles and
Progress, Presented at FESMA 99, Amsterdam, October 4-7.

Rudolph E.E., Wittig G.E, Finnie G.R and Morris P.M. (1998) Verifying Function Point
Values, European Software Measurement Conference (FESMA'98), Antwerp,
Belgium, May, 1998

Wittig G.E, Rudolph E.E., Finnie G.R and Morris P.M. (1999) “A Web-Based Research
Project to Gather International Functional Size Data for Function Point Coefficient
Determination” in Rob J Kusters, Adrian Cowderoy, Fred J. Heemstra and Erik
P.W.M. van Veenendal (eds), “Project Control for Software Quality: Proceedings of
ESCOM-SCOPE 99”, Shaker Publishing Co. Masstricht, pp. 237-246.

COPYRIGHT
G.R.Finnie, E. Rudolph, and G.E. Wittig (c) 2000. The authors assign to ACIS and
educational and non-profit institutions a non-exclusive licence to use this document for
personal use and in courses of instruction provided that the article is used in full and this
copyright statement is reproduced. The authors also grant a non-exclusive licence to ACIS to
publish this document in full in the Conference Papers and Proceedings. Those documents
may be published on the World Wide Web, CD-ROM, in printed form, and on mirror sites
on the World Wide Web. Any other usage is prohibited without the express permission of
the authors.

	Home
	Contents
	Search
	Exit

