

System Development in the New Millennium:
An Australian Perspective on OO Adoption

Ee Kuan Low1

Angèle L M Cavaye2
Aileen Cater-Steel1

1Department of Information Systems
University of Southern Queensland
Toowoomba, Queensland, Australia

Email: eekuanlow@usq.edu.au

2Graduate College of Management
Southern Cross University

Coolangatta Campus, Queensland, Australia

Abstract

In recent years there has been increased interest in object-oriented (OO) methods as a
quicker, more comprehensive and viable alternative to traditional data- and process-oriented
methods. This paper presents the first phase of exploratory research into understanding the
issues relating to making the decision to adopt OO, the actual process of OO adoption and
evaluation of OO adoption within the Australian context. A case study was conducted
involving a large government organisation. The findings from the case study provide a
fascinating insight into the realities of the OO adoption process.

Keywords

Change management, exploratory research, information technology adoption, IS development
methodologies, object-oriented approach, case study.

INTRODUCTION
The turn of the century and beyond is perceived and accepted by most writers as an age of
continuous change. These changes are especially evident in the areas of business
management and information systems. As businesses rely more and more on computing
technologies and information systems development to cope with changing requirements, it is
acknowledged that the traditional approaches to system development are inadequate in coping
with these changes (Taylor 1992; Brown 1997; Sultan & Chan 2000).

In order to overcome limitations of existing traditional systems development methodologies
(SDMs), IS practitioners are interested in adopting better and more effective SDMs. A major
candidate as a new methodology is OO - the methodologies and techniques based on object
orientation. OO has been in existence for nearly 30 years, but it is only with recent
developments in programming languages and supporting hardware that it is currently seen as
a promising viable method as an alternative to traditional methodologies (Johnson &
Hardgrave 1999a).

There is limited knowledge of the factors that influence the decision-making process when
organisations consider OO adoption, limited knowledge of the ways in which the system
development process needs to be adapted for OO development, and limited knowledge about
the way in which OO methods can most effectively be introduced and evaluated (Dick &
Rouse 1994; Fichman & Kemerer 1997). Despite the general lack of knowledge, many
organisations are seriously considering OO adoption, are in the process of adopting OO, have

adopted OO in some form, or are now evaluating the productivity enhancements of OO
(Barnard 1998). Clearly, there is a need for research to address the lack of knowledge and to
enable the development of guidelines for improved practice.

This paper starts with a discussion of OO’s promise as the appropriate SDM for the new
millenium. This is followed by the presentation of a research framework that could be used to
investigate OO adoption. Findings from the case study are discussed and finally, issues for
further research are put forth.

OO: AN APPROPRIATE SDM FOR THE NEW MILLENNIUM
Advocates of OO assert that OO shows much promise as an appropriate SDM for the new
millennium. The reasons for an increased interest in OO systems development are manifold
and are now discussed.

Utilises a ‘complete’ methodology. OO is a methodology that provides a step-by-step process
that provides segregation of phases to reduce unnecessary complexity (Federowitz &
Villeneuve 1999). At the same time, there is ease of transition between the phases of analysis
to design to implementation. Because of this, it is advocated as a complete system
development methodology that concerns analysis and design and not just programming and
implementation.

Handles systems of arbitrary size and complexity. The OO data model is a superset of all the
preceding generations of data models and hence, is able to cope with legacy systems. Also,
its all-encompassing data model is able to represent data models of any arbitrary complexity
and size (Taylor 1992; Brown 1997). OO’s encapsulation of related data and procedures is an
effective tool for hiding or revealing complexity, allowing for freedom of expressing differing
degrees of complexity in a business system.

Provides flexibility in dynamic and turbulent environments. OO fares well on the flexibility
criterion (Taylor 1992; Johnson & Hardgrave 1999b). If designed well, the high degree of
modularity enforced in OO methodology allows for changes to be implemented in parts of the
business without affecting other parts of the business. Reusability of business objects through
its inheritance hierarchy decreases the time needed to develop business systems (Berard
1996).

Supports integrated organisational solutions. OO combines the effectiveness of both process
and data methodologies. With its ease in integration with organisational structures via object
relationships, OO works to move system development from one-off solutions to integrated
organisational solutions. OO assists in viewing and modelling the organisation in a ‘real-
world’ context – the modelling of people interacting with business objects to produce
meaningful reports for effective decision-making (Brown 1997).

Enforces standards in a methodology. Differing views are offered here. The optimists
(Taylor 1992) suggest that OO methodologies are ready for prime time and are no longer a
promise, but a reality. After all, the OO programming component has been around for more
than 30 years. On the other hand, there are numerous variants of the OO methodology.
Pessimists and realists (Adhikari 1996; Fichman & Kemerer 1997) assert that standards in OO
methodologies are as yet non-existent and that such standards are pre-requisites for
widespread adoption of OO.

Benefits of OO Approach

OO SDMs have received attention in information systems development due to the advantages
over traditional approaches claimed by OO proponents. Numerous articles based on practical
experience and empirical work have detailed the promises that drive organisations to jump on

the OO bandwagon (Taylor 1992; Dick & Rouse 1994). The main benefits identified in the
literature are as follows.

Increased reuse in system development. OO concepts of inheritance and polymorphism
encourage the reuse of existing objects. Component-based development is performed at a
fraction of the time and cost of traditional system development (Taylor 1992; Meyer 1987;
Hantos & Joseph 1997).

Greater resilience to changes in the business. Low coupling and high cohesion within and
between objects increase the maintainability of OO systems making OO systems more
resilient to changes in the internal and external environments. OO systems are generally
easier to modify and maintain than systems developed using the traditional SDMs (Henry &
Humphrey 1992; Taylor 1992; Johnson & Hardgrave 1999b).

Faster system development. The notion of reusability and standard methodology notations,
when implemented correctly, create highly reusable OO objects. Component-based system
development infers a quicker and faster way to develop systems (Taft 1995; Hantos & Joseph
1997). The promise of OO to eradicate problems of the mythical man-month of IS projects
has contributed in a major way to its acceptance as 'the' SDM of the millennium.

Better support for the creation of graphical user interfaces. The importance of GUIs in
system development can no longer be ignored as most business systems today consider
graphics as not only appropriate, but essential. Most OO-based techniques, tools and support
tools are GUI-based to better support the creation of the GUI component of a system (Dick &
Rouse 1994).

Production of higher quality systems. Because OO systems are largely constructed from
existing, proven components, the methodology typically yields a system that is assembled
from high quality, accurate and error-free objects. The end-result is a system that is of higher
quality than those developed from scratch, as in traditional SDMs (Fichman & Kemerer 1992;
Taylor 1992; Johnson & Hardgrave 1999b).

Risks Inherent in OO Adoption

Although OO provides many exciting opportunities and benefits to a potential adopter,
projects contemplating the use of OO carry some inherent costs (Taylor 1992; Hantos &
Joseph 1997). The main costs and risks identified in the literature are as follows.

Technology investment. Most IS projects face critical decisions in the use of new technology
(Hantos & Joseph 1997). OO projects are inherently based on new technology as adequate
technology is needed to support the activities of OO system development. Perceived risks
include the incompatibility of OO with legacy system development and maintenance (Taylor
1992), suitability of methodology to suit the business philosophy (Adhikari 1996), vendor
support and the maturity of OO SDMs (Fichman & Kemerer 1993).

Staff training and experience. A sufficient number of experienced people are required among
managers, system architects, and developers for the overall effectiveness of the OO
development team (Hantos & Joseph 1997). There are two main overriding themes in the
literature of OO adoption with regards to the adoption costs related to the development team:
paradigm shifts in mindset (Hantos & Joseph 1997); and the learning curve to arrive at a
satisfactory level of OO practice (Attewell 1992). Unskilled development teams may render
the OO system to be a worse system than if traditional SDMs were used (Johnson &
Hardgrave 1999b).

Management education and support. Management style and technique will need to be
reviewed when adopting OO. Managers must realise the commitment required of them to
support OO adoption. Three main areas would concern business managers when adopting

OO. Firstly, reward structures must be re-assessed to encourage code reuse (Taylor 1992).
For example, lines of code would no longer suffice as measurement of programmer
productivity. Secondly, management must be prepared for new employee positions and
relationships to emerge, including a designated ‘objects librarian’ to index, manage, instigate,
promote and facilitate re-use and a new object consumer-producer relationship (Taylor 1992;
Classe 1995). Finally, these changes that occur within the development team and the
organisation as a whole, require careful management.

Commitment to reusability. One of the ultimate goals of adopting OO SDMs is the increase
in the reusability of software components (Taylor 1992; Fichman & Kemerer 1992, 1993;
Brown 1997). Even so, adopting OO does not guarantee reusability. Reusability is not a
direct result of using OO SDMs, it is more a result of properly managing the OO system
development process. The OO development team must have a commitment to reusability.
This means that developers should design for future uses, not just for the problem at hand.
The object consumer must trust the abilities of the object producer to construct highly reliable
and generic reusable objects (Taylor 1992; Fichman & Kemerer 1997).

Table 1 summarises the main risks associated with OO adoption and provides a number of
mitigation strategies suggested by the OO adoption literature.
Risks Mitigation strategies
Incompatibility of
technology

Pilot new technologies on a small scale before adopting them on large
projects.

Suitability of methodology
Maturity of OO SDMs

Use S-curve analysis to predict the future usage and popularity of a
methodology. Also, OO standards-making organisation such as OMG’s
recommendations on specific methodologies could be a starting point in the
selection process.

Continuous vendor support Evaluate vendors based on its market status, product features and product
support terms.

Paradigm shifts in mindset Provide foundation-level training (OO concepts) up front before project-
specific training (OO implementation language).

Learning curve Create an environment to learn incrementally and through customised
mentoring programs.

Outmoded reward structures
Enforcing re-use

Re-evaluate reward structures with a focus on reusability.

New structure of employee
relationships
Paradox: producer vs.
consumer

Take personality trait of employees into consideration in the recruitment
process. For existing staff, staff education and reward structure may assist
in the transitory phase. Also, there may exist a need to re-evaluate
organisational structure, hierarchy and relationships.

Change management Facilitate close-knit employer-employee relationships through open
communication channels.

Table 1: Perceived costs and mitigation strategies (Adapted from Taylor 1992; Hantos &
Joseph 1997; Johnson & Hardgrave 1999a, 1999b)

Making the decision to adopt. Making the decision to adopt OO will require in-depth analysis
and evaluation of its benefits and costs. Costs and risks are associated with any type of
adoption but decision-makers have to be assured that these risks can be mitigated, or at the
very least, be reduced to a satisfactory level, to reap the intended benefits of adoption. The
benefits of changing from traditional to OO methodologies must exceed the costs. Most
importantly, there is a need for a collaborative decision to be made by both development and
management teams to see if the benefits of such an investment can be realised within the
time- and cost-frame of the system development project.

CURRENT STATE OF OO ADOPTION
OO has found increased acceptance and use in a number of commercial software development
organisations, consultancies, business organisations and universities (Reed 1995). Research

centres have been established in order to understand and properly manage this paradigm shift
in system development.

Adoption and Use of OO

In evaluating current OO adoption and predicting potential OO adoption in the US, Fichman
& Kemerer (1993) developed a framework to analyse software process adoption (see Figure
1). The vertical axis reflects Roger’s Diffusion of Innovation (1995) view of organisational
adoptability: relative advantage; compatibility; complexity; trialability; and observability.
The horizontal axis reflects economic factors affecting adoption at the community or industry
level: prior technology drag; irreversibility of investments; sponsorship; and expectations.
These axes combine to form four quadrants, implying distinctive adoption trajectories.
Empirical testing of the grid on OO adoption was conducted in 1997 using case research
methodology (Fichman & Kemerer 1997).

Niche – Adoption will start out fast
among adopters who are relatively
insensitive to standards issues or who
have optimistic expectations about
future levels of adoption.

Dominant technology – The technology
will be rapidly adopted as a dominant
process technology. It will face relatively
low barriers to individual or community
adoption.

Experimental – The technology will
need to evolve before it is widely
adopted by mainstream organisations
as a dominant technology

Slow mover – The technology will diffuse
steadily but slowly because of the
difficulty individual or community
adoption.

High

?

Organisational
adoptability

?
Low

 Low ? Community adoptability ? High

Figure 1: Software Process Technologies Adoption Grid (Adapted from Fichman & Kemerer
1993, p.10)

In the US, Fichman and Kemerer (1993, 1997) found OO methodologies to be at the
experimental stage of adoption and hence, will need to evolve before they are widely adopted
as a dominant technology by mainstream organisations. OO was also predicted to have low
acceptance in large in-house IS organisations.

In Australia, adoption of the OO approach appears to be growing, judging from the number of
commercial (non-academic) OO conferences run every year and the steady increase in
empirical studies of OO software practice between the years 1985 to 1995 (Reed 1995). Reed
also noted that a number of consultancies and development houses specialising in the use of
OO techniques have increased, and an Australian commercial object-oriented language
'Ochre' has been produced.

Applying Fichman & Kemerer’s (1993) grid, Dick & Rouse (1994) studied OO adoption in
the Australian context. They conducted an exploratory study of four organisations in Sydney
and Melbourne and found that OO in Australia has reached the niche stage – adoption will
start out fast among adopters who are relatively insensitive to standards issues and/or those
who have optimistic expectations about future levels of adoption.

RESEARCH ISSUE AND METHOD
The topic of OO adoption can be divided into three sub-topics corresponding to three phases
in the overall OO adoption process: pre-adoption, adoption and post-implementation. The
research questions addressed by this study are:

• Why does a large Australian organisation choose to adopt OO?
• What is the process used by a large Australian organisation in adopting OO?

• How does a large Australian organisation evaluate OO adoption?

Case Study

A large Queensland government organisation was chosen as the initial case study for this
research project. A project team consisting of four personnel and two consultants had just
completed an OO project (referred to as 'the project') at the time data collection was
conducted. The project commenced in early March 1999 and was completed in late October
1999. The project's timeline is presented in Table 2.
Adoption Phase Duration Description
Pre-adoption phase 2.5 months Project planning began with the evaluation of benefits and risks.

Request for Proposals from leading IT consultancies were distributed.
At the end of this phase, the go-ahead was given by the steering
committee.

Adoption 6 months Project commenced and completed with post-project presentations to the
Steering Committee and internal staff.

Post-implementation 2 weeks Post-implementation evaluation of the project.

Table 2: Project Timeline

In-depth interviews were conducted based on the research questions presented earlier.
Informants provided data on OO adoption in the recent OO project that they were involved in.
Informants were selected on the basis that they had input into the decision to adopt OO,
experience in assisting the organisation in making the decision to adopt OO, input and/or
experience in assisting the transition process from traditional to OO methods, input and/or
experience in the management of OO projects and, input and/or experience in evaluating OO
projects. The informants were the IT Director, the Project Manager and one
Analyst/Programmer. The use of multiple informants with differing job tasks and
responsibilities provided information on the different phases of the OO adoption process, and
provided information from different stakeholder perspectives.

FINDINGS FROM THE CASE STUDY
In this section, the findings of each of the three research questions are addressed in turn.
Firstly, the motivation of a large Australian organisation to adopt OO is discussed, then the
adoption process is described, followed by the procedure to evaluate the adoption project.

Why Does a Large Australian Organisation Choose to Adopt OO?

In the organisation, OO technologies were selected as a consequence of business and
technology analysis. The project was regarded as an initial step towards achieving the
organisational goals of encouraging reuse in system development, discouraging system
development from scratch, and proactivity towards technological needs. The decision was
affected by the evaluation of a number of factors. These factors can be classified according to
importance. From the in-depth interviews, the factors affecting the decision to adopt OO
were ascertained (summarised in Table 3).

Factors of Primary Importance Factors of Secondary Importance
The technology chosen must
• comply with open, standards-based solutions and

not be locked in to particular vendor(s);
• be consistent with existing values and

organisational goals/needs;
• produce visible results at the end of a project;
• show promise as a pervasive technology; and
• allow for experimentation on a limited basis.

• Existence of a large, mature base of existing
adopters;

• investments in the technology (including staff
education, staff training and other financial
investments); and

• the need for a champion sponsor to define, set
standards, financially support and promote the
adoption of the technology.

Table 3: Factors affecting the decision to adopt OO.

Perceived risks. In assessing the perceived risks of adoption, the following were considered
serious risks, in order of seriousness – from most serious to least serious:
1. Requirement for extensive training and education;
2. Inability to enforce reuse;
3. Unavailability of stable implementation tools (e.g. programming languages);
4. Incompatibility with existing systems;
5. Lack of suitable methodology to support system development;
6. Requirement of high investment; and
7. Requirement for organisational restructuring.

Contrary to the literature relating to remuneration of OO development staff (Federowitz &
Villeneuve 1999; Classe 1995; Taylor 1992), the risk of a change in reward and remuneration
of employees was deemed not applicable to the project. The chosen organisation was a
government organisation, and as such, remuneration based on performance was not practised.

Mitigation strategies. Of the large number of mitigation strategies suggested by the literature
(Federowitz & Villeneuve 1999; Heist & Allen 1999; Hantos & Joseph 1997; Fichman &
1992), the organization used two main strategies to reduce risks of adopting OO:

• A small scale, pilot project to test out the adoption process and reveal the issues
relating to OO adoption;

• The use of external consultants to aid in education and training of internal staff to
sharpen their skills and reduce the impact of a paradigm shift in mindset.

Making the decision. A steering committee made the decision to go ahead with the project.
At this stage, a go-ahead for OO technologies was given, but specific requirements and
proprietary products were not selected yet. This steering committee consisted of members at
various levels of the organisation and backgrounds, including both business and technical
personnel. The steering committee formalised the decision and provided a formal
organisational structure for supporting the project.

This part of the research question identified the process by which a large Australian
organisation would evaluate the benefits and risks of OO adoption, to arrive at a decision to
adopt. At the organisation, the following benefits were sought:

• greater resilience to changes in the business;
• increased reuse in system development;
• higher quality systems; and
• reduction of system development time.

Having identified the benefits, costs and risks, the organisation made the decision to proceed
with the adoption.

The OO Adoption Process Used by a Large Australian Organisation

Once the decision has been made to adopt OO, the second phase in the adoption process
starts: adoption of OO methods by the development team in an IS project. Few studies have
focused on problems associated with adopting OO in a systems development project and
hence, little is known about the strategies that Australian organisations use to address the
process of OO adoption. The two main schools of thought concerning the process of OO
adoption are the revolutionary and the evolutionary approach.

Revolutionaries, such as Booch (1989) and, Coad and Yourdon (1991) believe that ‘object-
orientation is a radical change that renders conventional methodologies and ways of thinking
about design obsolete’ (Fichman & Kemerer 1992, p.22). Under the revolutionary approach,
OO techniques take the place of traditional methodologies in a ‘plunge’ manner (Hardgrave

1997). The revolutionaries feel that the separation of data and processes as distinct entities is
outdated and that these methodologies should be 'thrown out' (Fichman & Kemerer 1992;
Garceau et al. 1993). Also known as ‘complete rebuild’ by Taylor (1992, p.293), it is
advocated simply to 'pull out all the existing systems and rebuild them using OO SDMs.' In
this school of thought, the traditional methodologies should not be retained when adopting
OO.

Synthesists or evolutionists see object-orientation as simply an accumulation of sound
software development principles that adopters can graft onto their existing methodologies
with relative ease (Fichman & Kemerer 1992). Under the evolutionary approach, traditional
methodologies are integrated with OO concepts to facilitate the adoption process (Hardgrave
1997). The evolutionists or synthesists (Coad & Yourdon 1991) attempt to integrate OO with
the traditional methodologies.

Several authors (Fichman & Kemerer 1992; Taylor 1992) assert that the evolutionary
approach has gained greater acceptance and has been more productive. Also known as
‘graceful migration’, Taylor (1992) asserts that this is the only realistic approach. There are
several reasons for this:

• Acceptance to change. The introduction of OO in a gradual process increases the
development team’s acceptance to change in studying the new methodology;

• Resources for retraining. Off-the-job training is reduced as the development team
trains on-the-job by integrating the traditional tools with OO tools; and

• Comparison of tools and techniques. The on-the-job training facilitates increased
understanding of the tools besides providing the team with a comparison of the
effectiveness of the different tools in different situations.

In the case study, the first and main issue encountered in the project was the difficulty of
managing the project. The project manager had to be technically and managerially competent
to manage the first OO project in the organisation. As a solution, two project managers were
appointed: a project manager within the organisation (managerial); and a consultant project
manager (technical). This provided the technical and business mix needed to achieve the
project goals.

Second, there was a need for extensive education and training for staff working on the project.
External consultants who were knowledgeable with the technologies were employed to
provide JIT-training and JIT-education. Contrary to literature associated with the process OO
adoption (Classe 1995; Hantos & Joseph 1997), there was little resistance to change and few
problems with shifts in system development mindsets. This was due to the personality traits
of project personnel, an enthusiastic attitude towards a small, well-managed project, and the
possibilities of career progression based on skills developed from the project.

The third issue concerned the selection of specific technologies for the middleware
architecture. The consultants recommended appropriate technologies to be included. These
technologies were compliant with open, standards-based implementations, as specified by the
organisation.

The fourth issue concerned the testing of the systems. Component-, interface- and system
integration testing were performed. However, two out of three systems that were being tested
with the middleware architecture were testing systems, not production systems. This reduced
the risks of disruptions to existing systems. This was a risk mitigation strategy that was used
in the process of adoption.

The fifth was the issue of documentation. It was found that even though documentation
standards exist in the organization, they were not rigorously adhered to in the development of
systems. In the project, documentation was a problem, because the OO documentation style
did not sit well with the organisations' documentation standards. This issue was not resolved.

Adoption Style. A proactive evolutionary adoption style was used by the organisation in
adopting OO. The technologies chosen grafted onto and/or improved the organisation’s
existing practices and designs. There are two components to this adoption style: ‘proactive’
and ‘evolutionary’.

A proactive style ensured that the organisation would always attempt to stay ahead of its
competition. ‘Staying ahead’ does not necessarily mean adopting superior technologies. At
the organisation, ‘staying ahead’ is achieved by understanding how OO can contribute to the
organisation’s goals.

An evolutionary style ensured that the path of least resistance be taken when choosing
technologies. With evolutionary style, the impact on the skills and experience of existing
staff would not be revolutionary. An evolutionary mindset ensured that a change in skills be
perceived as an enhancement to the individual's existing set of skills. Also, legacy systems
are perceived to be enhanced, not replaced by new technologies.

How Does a Large Australian Organisation Evaluate OO Adoption?

As soon as a software product developed using OO methods is implemented, organisations
are interested in evaluating the success (or not) of the project and of OO adoption at large.
Little evidence exists about the actual benefits or productivity improvements that have been
realised by companies that have adopted OO. This could be due to the fact that the
measurement of productivity enhancements in OO projects is significantly different from non-
OO projects (Caspers 1994; Barnard 1998). OO attempts to increase productivity in all
phases of software development (Caspers 1994). It also attempts to facilitate the creation of
highly-reusable and high quality software in the development of future systems. Therefore,
the timeline for measuring project success is markedly different than in traditional systems
(Fichman & Kemerer 1993).

Although success of OO developed systems can be measured in a newly developed OO
system, a more useful measurement of OO success is the reusability of its objects in future
OO systems (Barnard 1998). The assumption is made that the objects developed in the
current system have been tested rigorously to reduce the likelihood of errors and hence, are of
high quality. These generic objects can then be utilised in future projects. The use of these
generic and high quality objects is expected to increase the quality of future projects and, at
the same time, reduce development time (Barnard 1998).

One way to measure project success is through the use of software metrics. However,
standard metrics used with traditional methodologies are limited in their ability to describe
true OO analysis, design and code (Barnard 1998). Because OO success spans multiple
projects, the issue of timeline and linkages between projects become a crucial issue.
Measurements must be taken across projects, by determining the reusability of objects from
one project to another. Chidamber & Kemerer (1994) proposed a suite of metrics with
measurements such as: depth of inheritance tree to represent potential reuse of classes in a
system, number of children to be an indirect measure of reuse capability and testing effort;
and lack of cohesion in methods to measure the quality of system design. Alternatively, a
function-point-like measure for OO software was developed by Antoniol, Lokan, Caldiera &
Fiutem (1999).

The case study project had success measured during the adoption process and at the end of
the project. During development, a standard project management software package was used
to monitor and control the project. At the end of the project, a post-implementation review
was performed to evaluate the success of the project. The post-implementation review
defined the parameters by which success is measured.

Three major measures of success for the project were: the project’s completion within its
allocated budget; the project’s completion within its timing schedule; and the effectiveness of
the project output. Effectiveness in the project outcome was defined as the achievement of
the objectives it had set out to achieve, the achievement of its implementation objectives, and
the achievement of all of the key criteria laid down for a middleware architecture. These key
criteria were security, scalability and reliability, reusability and extendibility, auditability, and
performance. Based on a subjective evaluation by the project managers, the project was
deemed to have met all the three objectives for effective project output.

No formal metrics (traditional or OO) were used to evaluate the success of the project. This
was possible and acceptable for the project because it was a proof-of-technology pilot. This
method of measurement may not be ideal for other OO projects. Project managers should
look into OO software metrics, as suggested by Harrison, Counsell & Nithi (1998), Berard
(1996) Chidamber, Darcy & Kemerer (1996) and Caspers (1994) as operational measures for
OO project success. The suite of OO design metrics proposed by Chidamber, Darcy &
Kemerer (1996) have become the de facto standard in the US, against which new proposed
sets of metrics have been judged, compared, and evaluated.

ISSUES FOR FURTHER RESEARCH
Insights into the adoption process for organisations that have successfully or unsuccessfully
adopted OO can provide practitioners with information about the important/crucial factors
that could make OO a viable investment. Since the area of OO adoption and transition has not
been well researched in Australia, there is still much scope for contributing to knowledge by
focusing a research project on the adoption of OO by Australian organisations.

Modifying the research parameters. The same research could be replicated in other
government and private sector organisations, with the findings compared with those of the
current study. Also, cross-country research on OO adoption might provide a useful basis for
comparing different adoption processes across national boundaries.

Implementing a multiple case studies design. A multiple case studies design could be
implemented using two categories of adopters: adopters and non-adopters and even successful
versus non-successful adopters. This would increase the validity and reliability of the study
on OO adoption. It would also enable tests for literal replication and theoretical replication.

Implementing a quantitative research design. This study confirmed the factors that influence
adoption, the risks associated with adoption, the mitigation strategies used and the perceived
benefits of OO. This study also revealed a number of additional factors and issues. These
factors/issues could be operationalised in a quantitative study, using surveys, to increase
external validity. This could lead to statistical generalisation of OO adoption in Australia.

Testing for managerial influence on OO project success. Most measures of OO success are
directly related to the efficiencies of software design. This study demonstrated that
managerial influence and support could have an impact on OO adoption success. It would be
beneficial to evaluate how much of this “success” is dependent upon or attributed to the
effectiveness and abilities of the project manager and others involved throughout adoption.

CONCLUDING COMMENTS
This paper has investigated the adoption of OO methods and techniques, specifically
identified three phases in the adoption process, outlined research questions to study each
phase, and presented findings based on a case study of a large Australian government
organisation adopting OO. The output of this research is expected to add to the existing
knowledge in the adoption literature. Although models of innovation adoption have been
developed in the past, e.g. Rogers' Diffusion of Innovations model (1995), none of them relate

specifically to OO adoption in Australia. Therefore, this study has contributed to knowledge
about OO adoption within the Australian context.

Until now, there has been insufficient research conducted to provide guidelines to
practitioners in the OO adoption process. Although Fichman and Kemerer (1997) have
identified lessons from early OO adopters in the United States, generalisability of such US-
based findings to the Australian context has been questioned (Dick & Rouse 1994). One aim
of the current study is to generate a set of guidelines that could assist Australian organisations
in the adoption of OO. The outcome of this research would provide a foundation for further
research using multiple case studies and quantitative techniques. The research output could
facilitate more informed decision-making by organisations that are pondering OO investment.
The research outcome could even serve to ease the transition process from developing
systems using the traditional methodologies to the utilisation of OO techniques.

REFERENCES
Adhikari, R. (1996) Object-Oriented Development - Method To The Madness - Standard

could make app building easier, InformationWeek, 576, pp. 1-2.

Antoniol, G., Lokan, C., Caldiera, G. & Flutem, R. (1999), A Function Point-Like Measure
for Object-Oriented Software, Empirical Software Engineering, vol. 4, pp.263-87.

Attewell, P. (1992) Technology Diffusion and Organizational Learning: The case of Business
Computing, Organization Science, vol. 3, 1, pp. 1-19.

Barnard, J. (1998) A new reusability metric for object-oriented software, Software Quality
Journal, vol. 7, 1, pp. 35-50.

Berard, E.V. (1996) Metrics for Object-Oriented Software Engineering [Online], Available:
http://www.toa.com/pub/html/moose.html, [Accessed 99].

Booch, G. (1989) What Is and What Isn't Object-Oriented Design?, American Progammer,
vol. 2,7-8, pp. 14-21.

Brown, D. (1997) An Introduction to Object-Oriented Analysis, John Wiley & Sons, New
York.

Caspers, J. (1994) Object-Oriented Programming Analysis, Design and Implementation
Methods, Computer Technology Research Corp., South Carolina.

Chidamber, S. R., Darcy, P. D. & Kemerer, C. F. (1996), Managerial use of object-oriented
software metrics, Working Paper Series No. 750.

Chidamber, S. R. & Kemerer, C. F. (1994), A metrics suite for object oriented design, IEEE
Transactions on Software Engineering, vol. 26, 6, pp.467-93.

Classe, A. (1995) An object lesson, Computer Weekly, pp. 34-5.

Coad, P. and Yourdon, E. (1991) Object-Oriented Analysis, 2nd edn, Yourdon Press,
Englewood Cliffs, New Jersey, USA.

Dick, M. and Rouse, A. (1994) Introducing object-oriented systems development processes:
The experience of four Australian organisations, The Information Systems Working
Paper Series: Monash University, pp. 1-8.

Federowitz, J.and Villeneuve, A.O. (1999) Surveying object technology usage and benefits: A
test of conventional wisdom, Information and Management, vol.35,iss.6, Jun,pp.331-44.

Fichman, R.G. and Kemerer, C.F. (1992) Object-Oriented and Conventional Analysis and
Design Methodologies, Computer, pp.22-39.

Fichman, R.G. and Kemerer, C.F. (1993) Adoption of Software Engineering Process
Innovations: The Case of Object Orientation, Sloan Management Review, vol.34, 2,
pp.7-22.

Fichman, R.G. and Kemerer, C.F. (1997) Object Technology and Reuse: Lessons from Early
Adopters, Computer, pp. 47-59.

Garceau, L.R., Jancura, E.G. and Kneiss, J. (1993), Object-oriented analysis and design: A
new approach to systems development, Journal of Systems Management, vol. 44, 1, pp.
25-32.

Hantos, P. and Joseph, S. (1997) Object Technology Adoption -- A Risk Management
Perspective, Xerox Corporation, USA.

Hardgrave, B.C. (1997) Adopting object-oriented technology: evolution or revolution?, The
Journal of Systems and Software, vol. 37, 1, pp. 19-25.

Harrison, R., Counsell. S. J. & Nithi, R. V. (1998), An investigation into the Applicability and
Validity of Object-Oriented Design Metrics, Empirical Software Engineering, 3,
pp.255-73.

Heist, A. and Allen, P. (1999) Australian vendor moves to object-oriented technology,
Operations Management, vol.5, 38, 20 Sep, p.11.

Henry, S.M. and Humphrey, M. (1993) O-O vs. procedural programming languages:
Effectiveness in program maintenance, Journal of Object-Oriented Programming, vol.
6, 3, pp. 41-50.

Johnson, R. & Hardgrave, B. C. (1999a) Object-Oriented Systems Development: Current
Practices and Attitudes in Industry, Journal of Systems & Software, vol.48, 1, pp.5-12.

Johnson, R. & Hardgrave, B. C. (1999b) Usefulness, Social Influence, and Ease of Use of
Object-Oriented Systems Development: Beliefs of Experienced OO Developers,
Journal of Computer Information Systems, vol.39, 4, Summer, pp.26-32.

Meyer, B. (1987) Reusability: The Case for Object-Oriented Design,IEEE Software,pp.50-64.

Reed, K, (1995) Software Engineering in Australia...A Brief Overview [Online], Available:
http://insect.sd.monash.edu.au/sercc/karl.html, [Accessed 98].

Rogers, E.M. (1995) Diffusion of Innovations, 4th edn, Free Press, New York.

Taft, D.K. (1995) OOP, there it is: Remixing, reusing existing materials, Computer Reseller
News, 647, p. 85.

Sultan, F. & Chan, L. (2000) The Adoption of New Technology: The Case of Object-
Oriented Computing in Software Companies, IEEE Transactions on Engineering
Management, vol.47, 1,pp.106-126.

Taylor, D.A. (1992) Object-Oriented Information Systems: Planning and Implementation,
John-Wiley and Sons, New York, USA.

COPYRIGHT
Low E K, Cavaye A L M, and Cater-Steel A (c) 2000. The authors assign to ACIS and
educational and non-profit institutions a non-exclusive licence to use this document for
personal use and in courses of instruction provided that the article is used in full and this
copyright statement is reproduced. The authors also grant a non-exclusive licence to ACIS to
publish this document in full in the Conference Papers and Proceedings. Those documents
may be published on the World Wide Web, CD-ROM, in printed form, and on mirror sites on

the World Wide Web. Any other usage is prohibited without the express permission of the
authors.

	Home
	Contents
	Search
	Exit

